TOPOLOGY FROM INTERIORS

by
Hsieh Wan-chen

§ 1. Introduction

In the beginning of Hocking and Young [2], the fundamental structure of a topolo-
gical space on a set X is determined by whether or not every point of X is a limit
point of a subset of X. Based on this concept, the primitive notions open set (see Hock-
ing and Young [2] p.5), neighborhood (see Wallace [10] p.14) and closure (see Pontrja-
gin (7] p.26) are generally used to introduce a topology on X. Also there are some cther
ways, such as closed set, base and subbase, eftc. Although the latter are not so often
used tb fcrm the initial definition of a topology, their equivalent inter-relation with
the former for defining a topolegy on X have been discussed intensively in many books
(see Aleksandrov [1] p. 4-6; Mendelson (5] p. 84-99; Simmons [9) p. 97-102; Yang [11]
p. 11-14). '

This paper is devoted to define a topology by the interior of a subset E of X first.
The main work of this paper is to show the equivalent inter-relation between the
topology defined by interior and that defined by open set, neighborhood and closure
in Theorems I,II,III, respectively. For this purpose, we do not want to discuss any
properties which do not concern our theorems.

Most of the symbols used in this paper are the same as those given by Kelley [3]
and Yang [11].

"§2. Motivation and definition

The fundamental relation between the limit'point and the interior of a set has
been shown in Kelley [3] p. 44, i.e., that the set of all points of a set E which are not
limit points of X-E (the complement of E) is precisely the interior E° of E. From this
concept, the interior E° of a set E can be determined entirely by the limit points.
Conversely, we can formulate the limit points of E in terms of interior. If the point
x does not belong to E, then x is a limit point of E iff x & (X-E)°. However in case
x € I, this criterion is not sufficient, since x can be an isolated point of E. But if x €
E and is at the same time a limit point of E, then x is a limit point of (E—x), ie, x &
[(X—E) U x]J° This condition is sufficient. Moreover, E=E—~x when x & E. Hence it
follows that x is a limit point of E iff x & [((X—-E)ux)e°

This conclusion and the duality between the “closure” and “interior” encourage us
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to give an alternative definition of topological space from interior.

Definition 1. Let X be a set. To every subset E of X there corresponds a subset
E° which is called the interior of E. The family {E°} of all interiors on X satisfying
the following conditions:

I-1. E°c E;

I-2. X°=X; _

I-3. E°, N E°=(E, N Ep)%

I—4. (E°)°=E°,
is called a topology on X. A topolegical space (X, {E°}) consists of the set X and the
topology {E°}. The elements of X are called the points of (X, {E°}).

Example 1. The most intuitive topology is the ordinary interior of an interval of
real numbers. That is, let X be the set of all real numbers. The interior of any in-
terval is the set without the endpoints of this interval. It can be verified that the
family {E°} of such jinteriors is a topology. Then (X, {E°}) forms a topological space.

Example 2. Let X be a set. We define the interior E° of a subset E of X as E°=E,
Then (X, {E°}) forms a topological space.

A topological space defined in this way is called discrete topological space.

Example 3. Let X be an infiriite set. We define the interior E° of a subset E of
X as: E°=E, if (X~E) is finite and E°=@ (the empty set), if (X—E) is infinite.

Conditions I—1, I—2, and I—4 of Definition 1 are easily seen to be satisfied. To.
check 1—3, we use the De Morgan formula

X—(EaNEp) = (X—Eu) U (X—Ep). .

Ezample 4. Let X be the three—point set {a, b, ¢j;. We define the interior E° of
all subsets of X to be #°=#, {a}°={a}, {b}°=@, {c}°=0, {a, b}°¥{a, b}, {a, ¢} °={a, ¢},
{b, ¢}°=0 and X°=X. It is clear that (X, {E°}) forms a topological space.

Example 5. Let X be the set of all rational numbers. We define the interior of a
stubset E={x: a £ x .Zb for some rational numbers a, b} to be E°={x: 4<Lx«LD for the
largest integer B € E which is 2 b and the smallest integer # € E which is > a}. If
the infinities & o of the real numbers are taken as integers, then the family {E°} is
a topology on X. )

8§3. Open sets

Definition 2. A set U in a topological space (X, {E°}) is called an open set iff
Ue=1,

Lemma 3.1. Every member E° of the topology {E°} is an open set.

(Proof) (E°)°=E° (by I—4).

Lemma 3.2. Let {U} be a family of all open subsets of a topological space (X, {E°}).
Then (1) X and § are in {U}; (2) the union of any number of members of {U} is in
{U}; (3) the infersection of a finite members of {U} is in {U}.

(Proof) (1) By 1-2, X°=X. Thus X is in {U}. By I-1, #° < §. Since for any
subset E of X, § « E. Hence #°=0 and thus @ is in {U}.

(%) Let us first observe that if for any two subsets B and D of X such that
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BcD. Then B°c:D° since B°=(BND)°=B°AD° by 1-3. Suppose that {V} is a family
of any number of open set and D=U{V: V€{V}}. Then every V is contained in D and
therefore Vo D®, and thus D°2{Ve: Vei{Vii=y {V: Ve {V}}=D. But D°cD, it follows
that D°=D and hence D is an open set.

(3) Let U, and Up be two open sets. Then U,NUp=U%,NU°%=(U,NUz)°.
Thus Ues NN Up is an open set. By induction this is true for any finite number.

Lemma 3.3. Let E be a subset of X. Then the interior E° of E is the largest open
set contained in E (see Kelley [3] P.44; Lefachetz [4] P. 32).

(Proof) Let {U} be a family of all open subsets of the topological space (X, {E°})
and let {V}={V: Ve {U}, VcE}. By Lemma 3.1, E°® is an 6pen subset of E, and conse-
quently E°€ {V}. This implies that E°c U{V: V& {V}}. On the other hand, since Vo E
for all Ve {V}, therefore U {V: V& {V}}cE, and so U {VE {V}}=(U {V: Ve{V}})°cE°.
Hence E°=y {V: V¢ {V}}. That is E° is the largest open subset of E. The proof of
this lemma is completed.

Theorem I. Let X be a set and let {B} be a family of subsets of X having the
properties (1), (2), (3) of lemma 3.2, ie,

0-—-1. Xe& {B}, 6e {B};

0—2. U {B;: Be {B}, i€l for any index set 1} € {B};

0-3. N {Bi: Be {Bj}, i€l for a finite index set I} € {Bj.

Then there is one and only one way of making X into a topological space so that {B}
is the family of all open sets of X. :

(Proof) Part 1. It follows from Lemma 3.2 and Lemma 3.3 that there is only one
way to define the interior E° of any subset E of X by the given family {B}. Namely,
we have to let

EC=1 {B: BE {B}, BCE}. ccoereeriieisi (A)
Part 2. Now we must show that the family {E°} defined in (A) satisfies
the four conditions of Definition 1.

We omit the easy procfs of the conditions I—1 and 1—-2.

To prove the condition 1—3, we observe from (A) and 0—2 that E°¢ {B} and E° is
the largest member of {B} ccontained in E. Let E, and Ep be two subsels of X. Then
E°,N E°pzEL.NEp and E°,N E°pe {B} by 0—3. Hence E°,N E°sc (E,N Ep)°. On the
other hand. we let B be a member of {B} such that Bc (E,NEp). Then bofh Bck,
and B Ep, therefore B E°, and BcE®;, and hence BcE°,NE®,. Since B is an arbi-
trary member of {B} contained in E,NE;, ie, B (E,NEg)°, it follows that (E,NEg)°
cE°uNE®s. Hence E°NE°=(E,NEp)C.

Let E° be the interior of E defined in (A). Then, as we have ncted above, E° is
the largest member of {B} contained in E. Similarly, (E°)° is the largest member of
{B} contained in E°. Sincz E°¢ {B}, so that (E°)°=E° and the condition I -4 is satisfied.

As we have shown above, (X, {E°}) forms a topological space.

Part 3. The next thing is to show that, when X is made as above into a
topological space, the open sels are precisely those sets which belong to the given
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family {B}. Let B€{B}. Then B contains at least one member of {B}, namely B itself.
And so B°=B. By Definition 2, B is an open set. Conversely, let U be any open set
of X. Since B¢ {B}, by 0—1, there is a non-empty subfamily of {B} contained in U
whose union is U° by (A). But U°=U since U is open, and U°¢ {B}, by 0~2. Hence
Ue {B}. Combining these, it follows that the family {U} of open sets concides with
the family {B}. Thus the theorem is proved.

This theorem enables us to define the same topological space by means of open
sets rather than by means of interiors. The definition of a topological space in terms
of open sets is used quite generally, because from the lcgical point of view, it is sim-
pler than that of interiors. In fact, many ccncepts can be made and theorems proved
much more simply and elegantly cn a topological space in terms of open sets than in
terms of interiors. But from the practical point of view, to verify the conditions
0—1 to 0—3 is not so easy as to verify the conditions I—1 to I—4 from a previousely
defined family with which we want to make a set X into a topological space.

§4. Neighborhoods

Definition 3. A set N in a topological space (X, {E°}) is called a neighborhood of
a point x of X iff the interior N° of N contains x. The family of all neighborhoods
of x is denoted by {Ny}. A neighborhood of a point needs not be an open set (see
Kelley (3] P. 38).

Lemma 4.1. Let {N;} be the family of all neighborhoods of x in a topological
space (X, {E°}). Then {N4} is a non-empty family.

(Proof) Since X°=X by 1—2, X¢& {N,}, i.e., the set X 13 the neighborhood of all its
points.

Lemma 4.2. Let {Ni} be the family of all neighborhoods of x in a topolegical
space (X, {E°}). Then (1) if Niis a neighborhood of x, then x€Ny; (2) any subset of X
containing a mneighborhood of x is itself a neighborhood of x; (8 if Ny and My are
two neighborhoods of x, so is NxN M. @ if N, is a neighborhood of x, there is a neigh-
borhood My of x such that Ny is a neighborhood of every point of M.

(Proof) (1) x€N°,c Ny by Definition 3 and I—1. ‘

() Let Ni& {Ni} and NyoMcX. Then x€N°,, N°,cM° and therefore
XEM®. Hence M€{Ny}, ie.,, M is a neighborhood of x.

8) Since "N;€ {N;} and M €{Ny}, then x€N° and x€M°,. This follows
that x€N°; N M= (NNM,)° by I—3. Henece NN M, & {N,}.

@ If N €{Nx}, then, by Definition 3, x€N°,.
Since (N°.)°=N°, by I-4,N°, itself is a member of {N;}. Moreover, N°x€ {Ny} for
every yEN°;. So M;=N°; is the desired neighborhood of x.

Lemma 4.3. A subset B of X is a member of {E°} iff B is a neighborhood of each
of its points.

(Proof) The necessity cf this lemma has been shown in proving @) of Lemma 4.2.
We now prove its sufficiency. If B& {N,} for every x€B, then, by Definition 3. xeB°.
Therefor B B°. But BDB° and hence B=B°, Thus Bg {E°}.
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Theorem II. Let X be a set. To each point x of X there corresponds a non-empty
family {H;} of subsets of X. If {H,} satisfies the properties of Lemma 4.2, ie.,

N-1. x€H; for every Hye{H:};

N-2. H;cMcX for some Hy€ {H,}, then M&{H,};

N-3. Hx€ {H,} and Gi€ {Hy}, then HiNGx€ {Hx};

N-4. H.€ {H,}, there is Gi€ {H,} such that H & {Hy} for every y€Gy.

Then there is a unique topology {E°} on X such that the topological space (X, {E°})
has {Hx} as a family of all neighborhoods of the point x.

(Proof) Part 1. First we have to give a suitable definition of the interior to any
subset of X in terms of the given family {H,}. From Lemma 4.2 and Lemma 4.3, it
is reasonable to define the interior E° of E as

E°={x: Hyc E for some Hi& {H g} emeermeennii (B)
Part 2. As E° defined in (B), the family {E°} will satisfy the conditions
of Definition 1.

If x&E, the Hy¢E for every Hi€{H,} by N-1, and x¢E° by (B). Thus E°cE and
I-1 is satisfied.

Since the family {H.} is non-empty and H,c X for every H.€ {H.}, hence X° X.
The condition I—2 is satisfied.

Let yeE°,N E°p. Then there exist two members Hy and Gy of {Hy} such that Hyc Ea,
and GycEp. Thus HyN Gy EL,NEs By N-3, HyNGy€ {Hy}. Clearly, v€(E.NE;)° and
therefore E°,NE°pc (E,NEp)®. On the other hand, (E,NE)°
={x: Hxc (E,NEp) for some H €{H }}
={x: HyC (EsNEp)CE,for some H, € {Hy}} N {x: Hyo (E4NER) cEpfor some Hy€ {Hy}}
ci{x: HycE, for some H € {H,}} N{x: H,cE, for some H € {H}}
=E°%, N E°.

That is (ExNE)°cE°,NE°,. Hence E°,NE°;=(E,NEp)° and thus I-3 is satisfied.

Suppose that x¢& (E°)°. This implies that Hy ¢E° for every Hy€ {Hy}. By N-4, to
each H.¢ {H,} there exists G.€ {H.} such that H.€ {Hy} whenever y€G,. Let y€G;, but
Y¢E°. Then Hy¢E for every Hy€ {Hy} and thus Hy ¢ E. It follows that xZE° and hence
E°c (E°)°. On the other hand we have shown that (E°)° « E°. Hence (E°)°=E°, ie,
condition I-4 of Definition 1 is satisfied.

So X is made into a topological space (X,{E°}).

Part 3. Now we shall prove that the family {H,} to x will be the family {Ny}
of all neighborhoods of x on the topological space (X,{E°}).

Let Hx€{Hx}. Then x€H; (by N-1) and there exists Gz€{H:} such that XEchH
(by N-4). According (B), x€H°,, and hence H;€{N,} by Definition 3. On the other
hand, suppose that Ny;£{N;}, then x€N°; (by Definition 83) and there exists Hx€{Hx}
such that x€¢H,cN,(by (B)). Thus N &{H,} by N-2. Hence{H,}={Ny}.

Part 4. In looking back to Lemma 4.3, we c¢an easily find that it is equivalent
to (B). Hence there is a unique topology {E°}, as we have made above, with which the
topological space (X, {E°}) has the family {H,} as the neighborhoods of x. The pfoof
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of Theorem II is thus completed.

This theorem shows that we can define a topological space from neighborhoods
instead of interiors. (see Mendelson [5] p. 89; Wallace {10] p.14).

The definition of a topological space in terms of neighborhoods is probably the
most convenient from the intuitive point of view, because it gives a common sense
notion of nearness.

§5. Closure

Definition 4. A point x in a topological space (X, {E°}).is a point of closure of a
subset K of X iff any E° of {E°} containing x contains a point of K. The closure of K
will be denoted by K.

Lemma 5.1. Let {K™} be a family of all closures in the topological space (X, {E°}).
Then (1) the closure of any set K contains the set K; (2) the closure of the empty set @
is the empty set @ itself; (8) the union of closures of two sets is equal the closure of
the union of these two sets: @) the closure of the closure of any set is equal to the
closure of the set.

(Proof) (1) Let x€K. Then whenever xeE°e{E°}, E°NK#0. Moreover, there is at
least one E°€{E°}, namely E°=X, such that x€X and XNK=Kz£§. Thus x€K~. This implies
that KoK~

(2) We omit the easy proof.
8) Let K™y and K™p be two members of {K~}. Then
x€K,UK™p =9whenever x€E°€{E°}, E°NK,5%d or E°ﬂKp;§ﬁ.
—whenever x€E°C{E°}, E°N(K,UKp) 748.
=x€& (KyUKp)™. Now
xFK - 4UK " p—=>there exist two members E°, and E°s of {E°} such that x€E°,, x€E°%
and E°,NK.=0, E°sNKp=0.
=2x€ (B°,NE°) = (E.NE)° (by I-3) and (EwnE;;)"nCKwUKp):ﬁ.
=xE (KQUK;3>_. Hence (KsUKs) =K UK.
@) Let x¢ (K™)~. Then
x& (K~)~ =—whenever x€E°¢ {E°%}, E°NK 4.
—>there is some y€E° such that yeE° and y€K™.
—=3E°N K54 (by Definition 4)
=x€eK~. Thus (K™) < K~. But K< (K~)~, hence (K~)~"=K".
: ILemma 5.2. Lét D be any subset of X. Then X—D°=(X—-D)~ and X—-D =
(X—D)° (see Newman [6] P.30). '

(Proof) Let x be any point of X—D° Then

x€X—-D° xED°
&Sthere is no E°€{E°}such that x€E° and E°c D(by Lemma3.1 and Lemma3d.3)
&Sany E°¢{E°®} contains x and E°N (x—D) 0.
&EHxe (X—D). Hence X—D°= (X—D)".

The second half can be proved as
(X—=D)=X—[X—(X-D)]"=X—[X—(X—D)°] (by the first half)= (X~—D)°.
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Theorem III. Let X be a set. To each subset G ¢f X there corresponds a subset G™.
The family {G~} of all G~ in X satisfies the properties of Lemma 5.1, ie,

C—1. Ge G- ‘

C—2. =0~

C—3. G UG p= (GaUGp)

C—4. (G~ =G".

Then there is a unique topology {E°} on X such that the family {G-} is the family {K~}
of all closures in the topolegical space (X, {E°}).

(Proof) The proof of this theorem is similar to that of Theorem I and Theorem II,
so we shall give a brief proof.

From Lemma 5.1 and Lemma 5.2, we shall define E° to each subset E of X in terms
of the given family {G™} as .

[EP=X G B=X—G, G E{G T }rrrereremsrmmnmirreni e ©)

Then the conditions of Definition 1 will be satisfied.

Let E° be any member of {E°}. Then
Eo= (X—G)°= (X—G™)c(X—G) (by C—1) =E.Thus I-1 is satisfied.

Since X=X~—f, X°= (X—@#)°=X—@~=X~f@ (by C—2) =X. Thus 1-2 is satisfied.

Let Edw and E°; be any two members of {E°}. Then
B0y NE%) = (X—Ga)? N (X=GCp)°=(X—G )N (X=Gp)=X~ (GaUG ) =X~(GaUGp)™ (bY
C=3)=[X~(GaUGpI=[(X=Ga)N(X=Gp))°=(EaNEp)°.

Thus I-3 is satisfied.

Let E° be any member of {E°}. Then E°=(X—G)°, thus
(E°)°=[(X—()1°=(X—G")°=X~(G)"=X—G~ (by C—4)=(X—-G)*=E".

So that I-4 is satisfied.

As we have shown above, {E°} is a topology cn X. It is easily seen that {E°}is the
desired topology which makes the family {G~} as the all closures in the topological
space (X, {E°}). And this topology is unique (by Lemma 5.1, Lemma 5.2 and(C)).

We know frdm this theorem that the same topological space also can be defined by
closures, if we can give a suitable definition to interior (see Kelley [3] p.43; Patterson
[7} p. 41; Pontrjagin (8] p. 26).

We see that the axioms I-1 to I-4 are dual to the axioms C-1to C-4 in Boolean
Algebra (see Newman [6] p.7). If we consider the symbols “o” and *-” as the interior
operator and closure operator respectively, then they are dual. It is due to this duality,
we can give the definition of a topological space with I-1 to I-4 in §1.
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